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Abstract—The paper examines the stability of a web reinforced by any number of unsymmetrically placed
longitudinal stiffeners when subjected to pure bending. Solutions are presented for the cases where both of
the longitudinal edges are assumed to be either simply supported or rigidly clamped. In both cases it is assumed
that the edges of the panel bounded by the transverse stiffeners are simply supported.

Numerical solutions are presented for the case of two longitudinal stiffeners only. It is shown that when
the longitudinal edges are clamped, the most effective positions for the stiffeners are at 0-136 4 and 0284 d
from the compression flange, when a value of the buckling coefficient K equal to 356 is obtained. When the
longitudinal edges are simply supported the corresponding values are 0-123 4, 0-275 4 and 313 respectively.

For these two optimum conditions, the relationships between the stiffener parameters y and § and the aspect
ratio & have been determined. For values of « less than one, it is found that when both stiffeners are identical,
the increase in longitudinal edge support from a simple pin joint to a clamped joint has very little influence
upon the stiffener rigidity required to provide the maximum possible resistance to buckling. However, for
values of o greater than one, the influence of the longitudinal edge support becomes increasingly significant.

NOTATION

panel depth

panel length

plate thickness

Poisson’s ratio

second moment of area of gth stiffener

ratio of flexural rigidity of the gth longitudinal stiffener to flexural rigidity of plate, = Ef,/Dd
area of the gth longitudinal stiffener

ratio of area of gth longitudinal stiffener to cross-sectional area of panel, = A /dr
flexural rigidity of unit width of plate, = Er*/12(1 — u?)

aspect ratio of panel, = b/d

compressive stress at edge of plate, = Kn?b/dt

2 Tegs Oy stress components for plate

Cartesian co-ordinates

né/b, mn/d

transverse deflexion of plate’s middle surface

value of 5 at gth longitudinal stiffener

e bt/r’D = Ko?

number of longitudinal stiffeners

oy

ERMAQARODBRITE T TR
-

-~
-
Y

Ny

1. INTRODUCTION

IT 1s now generally accepted that the economical design of a deep plate girder results

in the use of a thin web reinforced by a system of transverse and longitudinal stiffeners.

When the loading is one of pure bending it will be necessary to employ a number of

longitudinal stiffeners in the compression zone. Although satisfactory solutions are

available for the buckling of a web reinforced by a single longitudinal stiffener, no

complete solution has been obtained for the buckling of such webs when reinforced by
79
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two or more longitudinal stiffeners. In the present paper a general solution to this problem
is presented, although numerical results are only provided for the case of a web reinforced
by two longitudinal stiffeners.

The structure considered is shown in Fig. |, which represents a panel of longitudmally
and transversely stiffened web plate. It is assumed that the flanges provide either a
simple pin support or a rigid support along the longitudinal edges OA and BC whilst
the transverse stiffening results in a simple support being provided to the panel along
edges OB and AC. MN. PQ, RS are longitudinal stiffeners. The load applied to the panel
is assumed to vary lmearly along OB and AC from a compressive stress at O and A
to a tensile stress of the sume magnitude at B and C. The stress system to which this
gives rise 1s:

o: = —(1=2n/d)a,. Ty, = 0, o, = 0. {1)

3

In this solution it is assumed that the longitudinal stiffeners are symmetrically placed
about the mid-plane of the web and that their torsional rigidity can be ignored. The
problem is to determine the optimum placing of the stiffeners and to determine the
relationships which exist between the non-dimensional parameters 7. 8, x and the buckling
stress parameter K.
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2. HISTORICAL SURVEY

In a recent paper, Leggett and Rockey [1] have presented a survey of the previous
work which deals with the buckling of webs subjected to pure bending, therefore only
a brief survey will be given in this Section. In 1960, Massonnet et al. [2] presented the
results of an extensive study of the buckling of a web clamped along its longitudinal
edges and reinforced by a single longitudinal stiffener. The resuits of their investigation
are in reasonable agreement with the solutions obtained by Leggett and Rockey {1],
and Ceradini [3], for the case of a torsionally weak longitudinal stiffener, and with that
obtained by Rockey [4] when the torsional rigidity of the longitudinal stiffener is also
allowed for.

Richmond [5] has recently presented an approximate method for computing the
buckling stress of simply supported plates reinforced by symmetrically disposed stiffeners.
In his approach, Richmond considers the longitudinally stiffened plate to behave like an
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orthotropic plate. As a consequence of his method of solution, Richmond does not
determine the limiting value of K corresponding to the stiffeners being nodal. Although
Richmond presented an approximate method for dealing with unsymmetrically placed
stiffeners, he did not give any detailed results obtained using this method.

In a series of papers [6,7] Kloppel and Scheer have given solutions for simply
supported rectangular plates under combined bending and thrust, for the cases of a
single longitudinal stiffener or two equal longitudinal stiffeners.

3. THEORETICAL SOLUTION

In reference [1], Leggett and Rockey presented a theoretical solution to the buckling
under pure bending of a rectangular plate clamped along its longitudinal edges, when
it is reinforced by a single longitudinal stiffener. In the present paper, this solution is
extended to deal with the case of a number of longitudinal stiffeners. In addition a
solution is provided for the case when the longitudinal edges are simply supported.

To save undue repetition only an outline of these solutions is presented here.

3.1. Longitudinal edges clamped

The deflection function employed, which completely satisfies the boundary conditions,
is given by

= sin x i Ay, (2)
m=1

where
. m my,2_ M mi,,3
$nly) = sinmy—my+ —{2+(=D"ly* = {1+ (= 1)"y". 3)
If n, denotes the position of the gth longitudinal stiffener from the compression

flange and B, the area ratio of this stiffener, then the final energy equation obtained
for the stiffened plate~see equation (17) of [1], is given by

z Z amnAmAn_x Z Z dmnAmAn

m=1 n=1 m=1 n=1
P T
+n Zl {lrg— 1B (1 =21,/ Z_:l ApZ g’} =0, )
where
Zpg = Pulnng/d) &
dmn = amn(a = O) - Ebmm (6)
n

a,., and b, being defined in equations (12) (13) and (16) of [1].

Since the plate is in neutral equilibrium, equation (4) must remain true for any small
variations in the form of distortion. Thus differentiating equation (4) partially with
respect to A,, gives:

o P / 2 @
amnAn_X Z dmnAn+n Z [yq_Xﬂq( _—Z—q)] [qu Zl anAn] = 0. (7)
n=1 q=1 n=

™Ms

it

n=1
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Since the coefficients A,, cannot be zero, the condition that equation (7) shall possess
a non-trivial solution is

ul 2
det(a,,,,,—xd,,,,,+7t Y [yq—xﬂq( ——Z—")] quZ,,q) =0. (8)
a=1 /

If the stiffeners have sufficient rigidity they will remain straight and the plate will
buckle between them. Whilst such a deflexion is capable of representation by the series (2),
it is nevertheless easier to determine the critical load in the following way.

The condition that the deflexion along the stiffeners is zero is that the following
equations should be satisfied :

Y AZy=0 gq=12,...,P. 9)

Obviously, since the stiffeners do not deflect, those energy terms involving y, and f,
disappear. Using the Lagrange Multiplier method, as in [1], one obtains the following
final equations:

o P
Zl (amn'—xdmn)An+ Zl qumq =0. (10)
n= q=

The condition that the equations (9) and (10) shall possess a non-trivial solution for
the A4, 1s *
a—yd Z
zr 0
where a, d and Z denote the matrices with elements a,,, d,,, and Z,,, respectively, and Z”
denotes the transpose of Z.

The ‘nodal’ value K of K obtained from equation (11) is the maximum obtainable
with the given stiffener positions.

=0, (11)

3.2. Longitudinal edges simply supparted
In this case, the deflexion function used is given by

w=sinx ) A,sinmy. (12)

m=1

Proceeding as in Section 3.1, equations (7) and (8) are again obtained, where in this case

Apy = g(l +atm*?  iim=n

=0 otherwise,
4 . ,
d,, = W—’_"%i if (m+n) is odd (13)
=0 otherwise,

Z,, = sin(nnn,/d).

ng
* The determinant given is in fact the condition for a non-trivial solution for the A4, and the 4,. However
P

any non-trivial solution in which all the A, vanish would give 3 4qZmg = 0, which cannot occur since the
Z,,, are linearly independent. a=t
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3.3. Relationship between stiffener rigidities

Having determined the ‘nodal’ value K; of K, as described in Section 3.1, for the
given stiffener positions, it is necessary to determine the relationship between yy,y,,... %
B> Ba, ..., Bp and a which ensures that the buckling load K = K, is achieved. For given
values of K and #,,1,,...,7, equation (8) gives a single functional relationship between
the (2P + 1) parameters y,, i, and a. In general, the determination of a functional relation-
ship between many parameters is very complicated, but in this case it can be shown
that the relationship is of a very simple kind and is completely determined by 2°—1
functions of a.

First we investigate the relationship between y and f§ for a particular stiffener. Let
7% be the value of y, when g, = 0. It follows immediately from (8) that

}’: = '}’q"’KQZ{I "2’?q/d}ﬁq9 (14)
so that

Ve = 1+ Ka?(1-2n,/d)B,. (15)

The rigidity y, thus depends linearly on the area parameter f,, and this determines
completely the effect of g,.

A similar relationship holds between y and f in the case of one stiffener and may be
verified in the results of Rockey and Leggett [1], and Stiissi et al. [8, 9].

The relationship between the y} will now be determined. Equation (8) may be written

. P
det(a,,,,,~o:2Kd,,,,,+n Yy y?Z,,,,,Z,,q) = 0. (16)
=1

Now, for each ¢ the matrix Z,,Z,, is of rank 1 (each row being a multiple of the
first row), so the determinant in (16) is linear in each y}. The relationship between the
7% is, therefore, a multilinear form in which the coefficients are functions of . A general
multilinear form in P variables has 2f—1 independent coefficients, the relationships
between the y} taking the following forms in the cases of P = 2 and 3:

P=2: yi+ayf+byi+c=0, (17
P=3: yIii+aytni+byivi+opyt+dyt+eyt+fi+g =0, (18)

the coefficients a, b, ¢, . . ., g being functions of a, and depending also on K, 5y, 7n,,...,Hp.
In the case of two stiffeners, (17) may be written in the alternative form

Gr—7hos -1 = ¢~ (19)
Writing
?Q = ‘)-‘:“FK“Z[l “2’74/‘1]5.;, (20)
equation {19) gives
=Ty —F) = 2 2n

Equations (20) and (21) give the desired relationship between y,, y,, f, and j, in terms
of the three functions of «:7¥, % and C. Equation {(21) shows that for given §,, f, and o
the graph of y, against y, is a rectangular hyperbola with asymptotes y, = #, and y, = ,.
The significance of 7, is that it is the rigidity required for the first stiffener when the
second stiffener has infinite rigidity, that is to say when the second stiffener is nodal. It
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is worthy of emphasis that the linear relationship between y, and f#; and between y, and
B, and the hyperbolic relationship between y, and y, are precise and are not approximate.

The values of 7% may be determined very simply by setting 8, = f, =0and y, =0
in the energy equation (4) and carrying out variation subject to the single constraint

Y A,Z, =0. (22)

The resulting determinantal equation is again linear in $} and so 7% may be determined
by evaluation of a finite approximation to the determinant for two trial values of 7%.
7% may be similarly determined. The ‘constant” C may be determined by finding any
other point on the rectangular hyperbola, that is to say by giving y¥ a value exceeding
7% and by solving the determinantal equation for y¥, again using the linearity. It was
found, however, that it was difficult to choose a priori a value for y¥ which was large
enough to make both (y¥—7*) and (y¥— 7%) of the same order of magnitude, so that any
small errors in the determination of y¥ and %% or of $% did not cause significant errors
in C. Accordingly, C was found explicitly by setting

" =0+C

(23)

vi=7+C
in equation (16) and solving a finite approximation to the determinantal equation for
C. This equation is, of course, not linear in C. It was found, however, that application
of the method of inverse linear interpolation to the value of the determinant resulted
in convergence after only a few iterations.

The beautiful simplicity of the linear and hyperbolic relations is complicated slightly
by the fact that it is necessary to consider the case of a deflexion with two or more waves
as well as the case of one wave. This is allowed for in the usual way by repeating the
relationship already obtained at 2a, 3a and so on. The result is that in certain cases the
relationship between y, and 7y, is not a single rectangular hyperbola, but a curve con-
sisting of parts of two or more rectangular hyperbolae. It is clear that in equation (20)
the ‘fundamental’ single half wave value of ® must be used.

4. DISCUSSION OF RESULTS

Although the theory presented deals with any number of longitudinal stiffeners,
numerical results are only presented for the case of two longitudinal stiffeners. Using
equations (11) and (13), values of K, (i.e. the buckling coefficient K obtained with stiffeners
of infinite rigidity) have been determined for many different placings of the stiffeners.
From these values it has been possible to determine where the two stiffeners should be
placed in order to yield the maximum buckling resistance.

Figure 2 gives some typical K,, o relationships for a selection of stiffener positions.
It will be seen that for certain of these, there are two separate minima; the case where
the two stiffeners are at 0-14d and 0-28d is close to the optimum configuration, since
the two values of K; at the minima are close.

Figure 3 presents the collected set of results for the case where the longitudinal edges
are clamped. Each point in Fig. 3 is the minimum value of K, obtained from curves
such as those in Fig. 2. The optimum placing of the two stiffeners was found from this
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study to be at 0-135d and 0-284 d from the compression flange, when a value of K equal
to 356 is obtained.

Table 1 gives the rate of convergence of the series employed. In the work presented
18 x 18 determinants were employed in the evaluation of K; and 12 x 12 determinants in
the determination of y, and v,.

TABLE |

K calculated-both stiffeners nodal Size of matrix Tx7 9x9 11 x 11 14x 14 18x 18

(y’s = )

n =02d

N, =05d K 211-55 19711 195-89 195-56 195-44

a =03

K calculated-both stiffeners nodal Size of matrix Tx7 9%x9 11 x11 14x 14 18x 18

(v’s = )

ny =015

n, = 0-60 K 117-875 113-81 112990 112031 111.831

a = 025
Stiffener nodal at 0-13d Size of matrix 6x6 8x8 10x 10 14x 14 18x 18
y calculated for stiffener at 0-285d
B=010=10 K = 346 ¥y 276679 278588 27945 282044  28.2341
Stiffener nodal at 0-13d Size of matrix 6x6 8x8 10x10 14x 14 18x 18
y calculated for stiffener at 0-25d
f=01a=09 K =260 y 18.4906 18-5746 18704 188207 188649
Stiffener nodal at 0-25d Size of matrix 6x6 8x8 10x 10 14x 14 18x 18
y calculated for stiffener at 0-134
B =01 =05 K =260 y 49716 49781 49854 49917 4-9928
Stiffener nodal at 0-5d Size of matrix Tx7 10x 10 12x12 14x 14 16x 16
y calculated for stiffener at 0.24d
p=010a=10,K = 1426 y 8120 8-220 8-235 8-241 8-246

Proceeding in a similar manner for simply supported longitudinal edges, the optimum
placing of the two stiffeners was found to be at 0-123 d and 0275 d from the compression
flange when a value of K, equal to 315 is obtained.

Relationships between the stiffener rigidities

Using equations (19)+21) and the values of 7%, 7% and C given in Table 2, it is possible
to determine curves such as those given in Fig. 4 for the case where the longitudinal
edges are simply supported and o = 0-6. Consider then the case where the two stiffeners
have an area of 01 dt. Any values of y, and y, which can be obtained from the rectangular
hyperbola ABCD will yield the maximum value of K, of 313. If the area of the second
stiffener is increased to 0-2 dt, then the relevant hyperbola would be EFCD.

Each hyperbola has, of course, two branches; however, only the outer branch is
shown. With those values of y, and y, associated with the outer branch, a value of the
buckling coefficient K equal to 313 will be obtained. A value of 313 will also be obtained
with the inner branch, but in this case it is not the least positive value of K satisfying
equation (8) and is therefore not of interest here.
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caused by the consideration of more than one half wave as discussed in Section 3.3.
Thus we see that by employing equations (19) and (21), in conjunction with Table 2,
values of y, and y, can be calculated for any condition.

TABLE 2
Longitudinal edges simply supported Longitudinal edges clamped
K =1313 K = 356
ny=0123d n, =0275d n,=0136d n, =0284d
a 7 7 ¢ 7t 7 c
0-4 422 553 0427 384 5-66 0-215
06 634 878 1953 298 9-00 285
07 648 10.57 4.122 -006 10-77 5-69
0-8 535 1217 7345 — 608 12:27 992
09 239 13-35 1194 — 1616 1323 1596
-0 -3-00 13-87 18:27 —31-54 13-40 2427
11 — 1155 1347 2672 —53.56 12.48 35.37
12 -23-99 11-86 3773 —8372 10-14 49-81
13 —41-18 875 5174 —1237 604 68-22
14 —64-01 380 6928 —1752 -019 9124
1-5 -9344 —3:32 90-85 —2401 —893 119-6
16 —1305 —12:98 1170 —3206 —20-60 1540
1-8 -232:1 —41-46 1857 —5369 —54-52 2442
20 —3785 —84-88 2806 —8433 —1057 3690
22 —580-2 —146-8 4072 —1261 —1784 5359
2:4 —849-1 -2310 5720 — 1814 -2772 7537
26 —1198 —341-6 7818 —2527 —407-0 1032
28 — 1641 —482-7 1044 —3430 —-5732 1380
30 -2192 —6591 1365 —4551 — 7817 1808
32 — 2869 —8756 1756 —5924 —1039 2330
34 —3687 —1137 2224 —7582 —1351 2957
36 —4665 — 1449 2777 —9564 —-1725 3703
38 — 5822 —1818 3428 —11910 —2169 4581
40 —7178 —2248 4186
42 —8755 —2747 5061
44 ~ 10570 —3321 6066
46 — 12660 —3976 7211
48 — 15040 —4721 8512

One design relationship which would clearly be convenient for both the designer
and the fabricator, will be when the two stiffeners have the same size; i.e. y; = y, and
B1 = B,. The dotted line in Fig. 5 gives this relationship. Figure 6 gives the relationships
between the values of y;(= y,) and the aspect ratio a for five values of § for the two
longitudinal edge conditions considered. This yields a very interesting feature, namely
that for values of a up to 1-0 there is very little difference between the values of y required
for the two different edge conditions. This will clearly facilitate the development of
suitable design rules.

In the case of simply supported edges, the value of y,(= y,) when o = 0-6 and
B = B2 = 01 is 16:36; see point B in Fig. 4. The K, o curves for stiffeners having these
properties are given in Fig. 7, which shows quite clearly that the value of K = 313 is
achieved.
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One point which should be fully appreciated is that if the values of ¥ and 73 for the
case of f, = B, = 0, and 7, and ¥, for other values of B, are used directly, then the value
of K obtained will be less than the maximum value K;. Referring to Fig. 4, for values
of B; = B, = 0-1, equation (21) yields the hyperbola ABCD, whilst direct application of
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7, and §, from equation (20) would yield the values of y, and y, corresponding to point
‘G’. It is therefore essential that the relationship given in equation (21) be used.

Figures 8, 9, 10 and 11 give values of ¥, and J, for three values of the area ratio f§,
for the two edge conditions considered. Using these curves and Table 2, in conjunction
with equations (19)+21), it is possible to determine the size of the longitudinal stiffeners
in order that the plate shall provide the maximum buckling resistance.
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CONCLUSIONS

Volues of C (equation{f))

Value of C {equation 1))

91

The optimum positions for two longitudinal stiffeners on webs subjected to pure
bending have been determined for the cases where both the longitudinal edges are
either rigidly clamped or simply supported. For both of these conditions relationships
between the flexural rigidity and area of the stiffeners and the aspect ratio of the panels

have been determined.
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Zusammenfassung—Die optimale Lage von zwei Liangsversteifungen fiir Platten die auf reine Biegung bean-
sprucht werden ist bestimmt worden fiir den Fall, dass die beiden Léngsseiten entweder starr eingespannt sind
oder frei aufliegen. Fiir beide Fille der Lagerung werden die Beziehungen zwischen der Biegesteifigkeit und
Fliche der Versteifungen und dem Seitenverhiltnis der Platten aufgestellt.

Abcrpakt—B paborte paccMaTpuBaercsi yCTOMYHBOCTb CTEHKH, YKPEIUICHHOH KakMM YTOXHO YHCIIOM
HECMMMETPHYHO DACIIOJIOKEHHBIX MPOAOIbHBIX YIONKOB XKECTKOCTH, IOABEPTHYTOM YHCTOMY crubanuio.
JlaroTca pelleHdsi A7 CIy¥aeB B KOTOPbIX 0b6a NpOROJBHBIX Kpas NPHHHMaroTcs kak nubo cBoGonHo
onmparoluecs, TG0 KecTko 3axarbie. B 060uX Clly4yasx NPHHHMAETCA, YTO Kpas MaHEIM OrpaHHYEHHbIE
[ONEPEYHbIMU YTONIKAMH KECTKOCTH SIBJIAIOTCA CBOGOMHO OnupaiolwMMHCH.

YuciieHHble pelleHHs IPHBEAEHBI TOJIBKO IJIA CJIy¥as C JABYMS NPOAOJILHBIMH YIOJKaMH >KECTKOCTH.,
TToxazaHo, YTO KOTAA NMPOHOJBHEIE Kpas 3aXaThl, camble 3¢ ek THBHBIC NO3ULMH 118 YTOJIKOB XECTKOCTH
sapasiroTcs Ha 0-136d u 0-2844 oT cxxkaToro mosica, Xoraa NojayyaeTcs 3HaueHAe KoPOHLHEHTA IPOROITBHOTO
nirnba K pasnoe 356. Koraa nponaonbHble Kpas CBOGOOHO ONHPAIOTCA, COOTBETCTBCHHBIC BEITMYHHBI
pasubl 0-123d, 02754 u 313. Ing 3THX ABYX ONTHMAJIBHBIX YCNIOBHM OBUIM OnpenesieHs! COOTHOIICHHS
MEXy TapaMeTpaMu y ¥ S yrojika XKecTKOCTH H OTHOCHTEIIBHOTO yriia a. ITpH 3HaYeHHAX o« HUXKE eAHHKLbL
651710 HalAEHO, YTO KOrAa 00a YroJika *ecTKOCTH OAHHAKOBBI, YBEJIHYEHHE MOIIEPKKH MPOJOJILHOIO Kpast
OT NPOCTOr0 IUAPHHPHOTO COCOHHEHHA K 3aKMMHOMY COCHHMHEHHIO BIMACT OYEHb Maji0 Ha XECTKOCTh
YTOJIKa XECTKOCTH, HYXHOIrO Ui TOTO 4YTO OBl MOJYYHTH MAKCHMAJBLHOE BO3MOXHOE COINPOTHBIICHHE K
npoaoabHoMy u3ruby. C Apyro# CTOPOHbI, 1A BEJTHYHH & NPEBLIIAIOLIAX CAHHALY, BIASHAE OLAEPKKH
OPOAOLHOIO Kpasi CTAHOBHTCH MPOTPECCHBHO Bonee BaXHBIM,



