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Abstract-The paper examines the stability of a web reinforced by any number of unsymmetrically placed
longitudinal stiffeners when subjected to pure bending. Solutions are presented for the cases where both of
the longitudinal edges are assumed to be either simply supported or rigidly clamped. In both cases it is assumed
that the edges of the panel bounded by the transverse stiffeners are simply supported.

Numerical solutions are presented for the case of two longitudinal stiffeners only. It is shown that when
the longitudinal edges are clamped, the most effective positions for the stiffeners are at 0'136 d and 0·284 d
from the compression flange, when a value of the buckling coefficient K equal to 356 is obtained. When the
longitudinal edges are simply supported the corresponding values are 0·123 d, 0·275 d and 313 respectively.

For these two optimum conditions, the relationships between the stiffener parameters /' and pand the aspect
ratio (X have been determined. For values of (X less than one, it is found that when both stiffeners are identical.
the increase in longitudinal edge support from a simple pin joint to a clamped joint has very little influence
upon the stiffener rigidity required to provide the maximum possible resistance to buckling. However, for
values of (X greater than one, the influence of the longitudinal edge support becomes increasingly significant.
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panel depth
panel length
plate thickness
Poisson's ratio
second moment of area of qth stiffener
ratio of flexural rigidity of the qth longitudinal stiffener to flexural rigidity of plate, = EI IDd
area of the qth longitudinal stiffener q

ratio of area of qth longitudinal stiffener to cross-sectional area of panel, = liq/dt
flexural rigidity of unit width of plate, = Et3112( I -11 2 )

aspect ratio of panel, = bid
compressive stress at edge of plate, = Krr1Dld2t
stress components for plate
Cartesian co-ordinates
rr~/b, rrl1/d
transverse deflexion of plate's middle surface
value of 11 at qth longitudinal stiffener
a,b2tln 1 D K(Xl

number of longitudinal stiffeners

1. INTRODUCTION

IT IS now generally accepted that the economical design of a deep plate girder results
in the use of a thin web reinforced by a system of transverse and longitudinal stiffeners.
When the loading is one of pure bending it will be necessary to employ a number of
longitudinal stiffeners in the compression zone. Although satisfactory solutions are
available for the buckling of a web reinforced by a single longitudinal stiffener, no
complete solution has been obtained for the buckling of such webs when reinforced by
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two or more longitudinal stiffeners. In the present paper a general solution to this problem
is presented, although numerical results are only provided for the case of a web reinforced
by two longitudinal stiffeners.

The structure considered is shown in Fig. I, which represents a panel of longitudinally
and transversely stiffened web plate. It is assumed that the flanges provide either a
simple pin support or a rigid support along the longitudinal edges OA and BC whilst
the transverse stiffening results in a simple support being provided to the panel along
edges OB and AC. MN, PQ, RS are longitudinal stiffeners. The load applied to the panel
is assumed to vary linearly along OB and AC from a compressive stress at 0 and A
to a tensile stress of the same magnitude at Band C. The stress system to which this
gives rise is:

(I)

In this solution it is assumed that the longitudinal stiffeners are symmetrically placed
about the mid-plane of the web and that their torsional rigidity can be ignored. The
problem is to determine the optimum placing of the stiffeners and to determine the
relationships which exist between the non-dimensional parameters y. p, C( and the buckling
stress parameter K.
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2. HISTORICAL SURVEY

In a recent paper, Leggett and Rockey [I] have presented a survey of the previous
work which deals with the buckling of webs subjected to pure bending, therefore only
a brief survey will be given in this Section. In 1960, Massonnet et al. [2] presented the
results of an extensive study of the buckling of a web clamped along its longitudinal
edges and reinforced by a single longitudinal stiffener. The results of their investigation
are in reasonable agreement with the solutions obtained by Leggett and Rockey [1],
and Ceradini [3], for the case of a torsionally weak longitudinal stiffener, and with that
obtained by Rockey [4] when the torsional rigidity of the longitudinal stiffener is also
allowed for.

Richmond [5] has recently presented an approximate method for computing the
buckling stress of simply supported plates reinforced by symmetrically disposed stiffeners.
In his approach, Richmond considers the longitudinally stiffened plate to behave like an
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orthotropic plate. As a consequence of his method of solution, Richmond does not
determine the limiting value of K corresponding to the stiffeners being nodal. Although
Richmond presented an approximate method for dealing with unsymmetrically placed
stiffeners, he did not give any detailed results obtained using this method.

In a series of papers [6,7] Kloppel and Scheer have given solutions for simply
supported rectangular plates under combined bending and thrust, for the cases of a
single longitudinal stiffener or two equal longitudinal stiffeners.

3. THEORETICAL SOLUTION

In reference [1], Leggett and Rockey presented a theoretical solution to the buckling
under pure bending of a rectangular plate clamped along its longitudinal edges, when
it is reinforced by a single longitudinal stiffener. In the present paper, this solution is
extended to deal with the case of a number of longitudinal stiffeners. In addition a
solution is provided for the case when the longitudinal edges are simply supported.

To save undue repetition only an outline of these solutions is presented here.

3.1. Longitudinal edges clamped

The deflection function employed, which completely satisfies the boundary conditions,
is given by

where

r

W = sin x L Am4>m(Y),
m=l

(2)

(3)

If rtq denotes the position of the qth longitudinal stiffener from the compression
flange and f3q the area ratio of this stiffener, then the final energy equation obtained
for the stiffened plate-see equation (17) of [1], is given by

where

OC' IX 00 00

L L amnAmAn- X L L dmnAmAn
m=ln=l m=ln=l

P 00

+n L ([Yq- xf3i l - 2rtid)][ L AmZmqF} = 0,
q=l m=l

(4)

(5)

(6)

amn and bmn being defined in equations (12) (13) and (16) of [1].
Since the plate is in neutral equilibrium, equation (4) must remain true for any small

variations in the form of distortion. Thus differentiating equation (4) partially with
respect to Am gives:

(7)
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(8)

Since the coefficients Am cannot be zero, the condition that equation (7) shall possess
a non-trivial solution is

det (amn - Xdmn+ 7tqtt [Yq- xf3q(1- 2:
q
)] ZmqZnq) = O.

If the stiffeners have sufficient rigidity they will remain straight and the plate will
buckle between them. Whilst such a deflexion is capable of representation by the series (2),
it is nevertheless easier to determine the critical load in the following way.

The condition that the deflexion along the stiffeners is zero is that the following
equations should be satisfied:

q = 1,2, ... ,P. (9)

Obviously, since the stiffeners do not deflect, those energy terms involving Yq and f3q

disappear. Using the Lagrange Multiplier method, as in [1], one obtains the following
final equations:

~. p

2: (amn - Xdmn)An+ 2: AqZmq = O.
n=t q=t

(10)

The condition that the equations (9) and (10) shall possess a non-trivial solution for
the An is *

la-Xd Zl_
-0,

ZT 0
(11)

where a, d and Z denote the matrices with elements amm dmn and Zmq respectively, and ZT
denotes the transpose of Z.

The 'nodal' value K L of K obtained from equation (11) is the maximum obtainable
with the given stiffener positions.

3.2. Longitudinal edges simply supported

In this case, the deflexion function used is given by
OCJ

W = sin x 2: Am sin my.
m=t

(12)

Proceeding as in Section 3.1, equations (7) and (8) are again obtained, where in this case
1t

amn = "2(1 + (X2m2)2 if m = n

= 0 otherwise,
4mn

dmn = (2 2f if (m+n) is odd (13)m -n

= 0 otherwise,

Znq = sin(n1tl1q/d).

* The determinant given is in fact the condition for a non-trivial solution for the An and the ;.q. However
p

any non-trivial solution in which all the An vanish would give L ;.qZmq = O. which cannot occur since the
Zmq are linearly independent. q= I
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3.3. Relationship between sti.ff(mer rigidities

Having determined the 'nodal' value K L of K, as described in Section 3.1, for the
given stiffener positions, it is necessary to determine the relationship between 1't, Y2,' .. 1'p;
fit, P2"'" Pp and IX which ensures that the buckling load K = KL is achieved. Forgiven
values of K and 'It,'I2,' .. ,'Ip equation (8) gives a single functional relationship between
the (2P + 1) parameters }'q, {fq and IX. In generaL the determination of a functional relation­
ship between many parameters is very complicated, but in this case it can be shown
that the relationship is of a very simple kind and is completely determined by 2P

- 1
functions of IX.

First we investigate the relationship between l' and P for a particular stiffener. Let
Y: be the value of Yq when Pq = O. It follows immediately from (8) that

1': = yq-KIX2[1-2'1q/d]Pq, (14)

so that

(17)

(18)

(16)

P = 3: yTy!y! +ayTy! + by!1'! + c1'!YT + d1'T + ey! +h! +g = 0,

1'q = y:+KIX2(1-2'1q/d)fiq. (15)

The rigidity 1'q thus depends linearly on the area parameter fiq, and this determines
completely the effect of fiq.

A similar relationship holds between l' and Pin the case of one stiffener and may be
verified in the results of Rockey and Leggett [1], and Sttissi et al. [8,9].

The relationship between the Y: will now be determined. Equation (8) may be written

(' P)det amn-IX2Kdmn+1t L y:ZmqZnq = O.
q=t

Now, for each q the matrix ZmqZnq is of rank 1 (each row being a multiple of the
first row), so the determinant in (16) is linear in each Y:' The relationship between the
Y: is, therefore, a multilinear form in which the coefficients are functions of IX. A general
multilinear form in P variables has 2P - 1 independent coefficients, the relationships
between the 1': taking the following forms in the cases of P = 2 and 3:

P = 2: YTy!+a1'T+b1'!+c = 0,

the coefficients a, b, c, ... ,g being functions of IX, and depending also on K, 'I t, '12' ... , 'IP'
In the case of two stiffeners, (17) may be written in the alternative form

(}'f-)'f)(}'!-)'!) = C2
• (19)

Writing
(20)

equation (19) gives
(21)

Equations (20) and (21) give the desired relationship between Yi> Y2, PI and fi2 in terms
of the three functions of IX :yT, i'! and C. Equation (21) shows that for given fit, fi2 and iX

the graph ofYI against Y2 is a rectangular hyperbola with asymptotes Yt = Yt and Y2 = h
The significance of )it is that it is the rigidity required for the first stiffener when the
second stiffener has infinite rigidity, that is to say when the second stiffener is nodal. It
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is worthy of emphasis that the linear relationship between YI and PI and between Y2 and
P2 and the hyperbolic relationship between YI and Y2 are precise and are not approximate.

The values of 1j may be determined very simply by setting PI = P2 = 0 and Y2 = 0
in the energy equation (4) and carrying out variation subject to the single constraint

L A,z,2 = o. (22)

(23)

The resulting determinantal equation is again linear in 1j and so 1j may be determined
by evaluation of a finite approximation to the determinant for two trial values of 1!­
1! may be similarly determined. The 'constant' C may be determined by finding any
other point on the rectangular hyperbola, that is to say by giving Y! a value exceeding
1! and by solving the determinantal equation for yj, again using the linearity. It was
found, however, that it was difficult to choose a priori a value for y! which was large
enough to make both (yj - 1f) and (y! - 1!) of the same order of magnitude, so that any
small errors in the determination of yj and 1j or of 1! did not cause significant errors
in C. Accordingly, C was found explicitly by setting

yj = H+C

y! = 1!+C

in equation (16) and solving a finite approximation to the determinantal equation for
C. This equation is, of course, not linear in C. It was found, however, that application
of the method of inverse linear interpolation to the value of the determinant resulted
in convergence after only a few iterations.

The beautiful simplicity of the linear and hyperbolic relations is complicated slightly
by the fact that it is necessary to consider the case of a deflexion with two or more waves
as well as the case of one wave. This is allowed for in the usual way by r~peating the
relationship already obtained at 2a, 3a and so on. The result is that in certain cases the
relationship between YI and Y2 is not a single rectangular hyperbola, but a curve con­
sisting of parts of two or more rectangular hyperbolae. It is clear that in equation (20)
the 'fundamental' single half wave value of a must be used.

4. DISCUSSION OF RESULTS

Although the theory presented deals with any number of longitudinal stiffeners,
numerical results are only presented for the case of two longitudinal stiffeners. Using
equations (11) and (13), values of K L> (i.e. the buckling coefficient K obtained with stiffeners
of infinite rigidity) have been determined for many different placings of the stiffeners.
From these values it has been possible to determine where the two stiffeners should be
placed in order to yield the maximum buckling resistance.

Figure 2 gives some typical K L , a relationships for a selection of stiffener positions.
It will be seen that for certain of these, there are two separate minima; the case where
the two stiffeners are at 0·14 d and 0·28 d is close to the optimum ~onfiguration, since
the two values of K L at the minima are close.

Figure 3 presents the collected set of results for the case where the longitudinal edges
are clamped. Each point in Fig. 3 is the minimum value of K L obtained from curves
such as those in Fig. 2. The optimum placing of the two stiffeners was found from this
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study to be at 0·135 d and 0·284 d from the compression flange, when a value of KL equal
to 356 is obtained.

Tab~e 1 gives the rate of convergence of the series employed. In the work presented
18 x 18 determinants were employed in the evaluation of KL and 12 x 12 determinants in
the determination of YI and Y2'

TABLE 1

K calculated-both stiffeners nodal Size of matrix 7x7 9x9 II x II 14x 14 18 x 18
(y's = (0)
'11 = 0·2d
'12=0'5d K 211·55 197'11 195·89 195'56 195-44

IX = 0·3

K calculated-both stiffeners nodal Size of matrix 7x7 9x9 II x II 14x 14 18 x 18
(y's = (0)
'II = 0·15
'12 = 0·60 K 117·875 113·81 112-990 112·031 111.831

IX = 0·25

Stiffener nodal at 0·13 d Size of matrix 6x6 8x8 lOx 10 14x 14 18 x 18
y calculated for stiffener at 0·285 d
f3 = 0·1, IX = 1·0, K = 346 y 27·6679 27'8588 27-945 28·2044 28.2341

Stiffener nodal at 0'13 d Size of matrix 6x6 8x8 lOx 10 14x 14 18 x 18
y calculated for stiffener at 0·25 d
f3 = 0·1, IX = 0'9, K = 260 y 18.4906 18·5746 18·704 18'8207 18·8649

Stiffener nodal at ()25 d Size of matrix 6x6 8x8 lOx 10 14x 14 18 x 18
y calculated for stiffener at 0·\3 d

f3 = 0'1, IX = 0,5, K = 260 y 4·9716 4·9781 4-9854 4·9917 4·9928

Stiffener nodal at 0'5 d Size of matrix 7x7 lOx 10 12x 12 14x 14 16 x 16
y calculated for stiffener at 0.2 d
f3 = 0'1, IX = 1·0, K = 142·6 Y 8'120 8·220 8·235 8·241 8·246

Proceeding in a similar manner for simply supported longitudinal edges, the optimum
placing of the two stiffeners was found to be at 0·123 d and 0·275 d from the compression
flange when a value of K L equal to 315 is obtained.

Relationships between the stiffener rigidities

Using equations (19H21) and the values of rT, r1 and C given in Table 2, it is possible
to determine curves such as those given in Fig. 4 for the case where the longitudinal
edges are simply supported and 0( = 0·6. Consider then the case where the two stiffeners
have an area of 0·1 dt. Any values ofYI and Y2 which can be obtained from the rectangular
hyperbola ABCD will yield the maximum value of K L of 313. If the area of the second
stiffener is increased to 0·2 dt, then the relevant hyperbola would be EFCD.

Each hyperbola has, of course, two branches; however, only the outer branch is
shown. With those values of YI and Y2 associated with the outer branch, a value of the
buckling coefficient K equal to 313 will be obtained. A value of 313 will also be obtained
with the inner branch, but in this case it is not the least positive value of K satisfying
equation (8) and is therefore not of interest here.
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Figure 5 gives the relationship between YI and Y2 when both stiffeners have zero
area, for different values of the aspect ratio ex. It will be noted that the relationship
between Yt and Y2 is given by a single hyperbola for the cases of ex equal to 0,4, 0,6, 0'7,
0·8 and 0·9 but that for 1,0, 1·1 and 1,2, it consists of parts of two hyperbolae, this being
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caused by the consideration of more than one half wave as discussed in Section 3.3.
Thus we see that by employing equations (19) and (21), in conjunction with Table 2,
values of YI and Y2 can be calculated for any condition.

TABLE 2

Longitudinal edges simply supported Longitudinal edges clamped
K = 313 K = 356

til == 0'123d tl2 = 0·275d til = 0'136 d tl2=0'284d

()( 1t r~ c rt r~ c

0-4 4·22 5·53 0'427 H4 5·66 0·215
0·6 6·34 8·78 1·953 2·98 9·00 2·85
0·7 6·48 10.57 4.122 -0,06 10'77 5·69
0·8 5·35 12·17 7·345 -6,08 12·27 9·92
0·9 2-39 13-35 11·94 -16'16 13-23 15·96
1·0 -3,00 13-87 18·27 -31'54 13040 24·27
1'1 -11,55 13047 26·72 -53.56 12.48 35.37
1·2 -23-99 11·86 37·73 -83'72 10'14 49-81
1·3 -41,18 8·75 51·74 -123'7 6·04 68·22
1·4 -MOl HO 69·28 -175,2 -0'19 91·24
1·5 -93044 -3,32 90·85 -240'1 -8,93 119-6
1·6 -130,5 -12-98 117·0 -320,6 -20'60 154·0
1·8 -232'1 -41,46 185·7 -536,9 -54,52 244·2
2·0 -378,5 -84,88 280·6 -843,3 -105'7 369'0
2·2 -580,2 -146,8 407·2 -1261 -178'4 535·9
2-4 -849'1 -231'0 572-0 -1814 -277-2 753·7
2-6 -1198 -341'6 781·8 -2527 -407'0 1032
2-8 -1641 -482,7 1044 -3430 -573·2 1380
3·0 -2192 -659'1 1365 -4551 -781,7 1808
3-2 -2869 -875,6 1756 -5924 -1039 2330
3-4 -3687 -1137 2224 -7582 -1351 2957
3-6 -4665 -1449 2777 -9564 -1725 3703
H -5822 -1818 3428 -11910 -2169 4581
4·0 -7178 -2248 4186
4·2 -8755 -2747 5061
4-4 -10570 -3321 6066
4·6 -12660 -3976 7211
4·8 -15040 -4721 8512

One design relationship which would clearly be convenient for both the designer
and the fabricator, will be when the two stiffeners have the same size; i.e. Y1 = Y2 and
P1 = P2' The dotted line in Fig. 5 gives this relationship. Figure 6 gives the relationships
between the values of Y1( = Y2) and the aspect ratio (X for five values of P for the two
longitudinal edge conditions considered. This yields a very interesting feature, namely
that for values of (X up to 1·0 there is very little difference between the values of Y required
for the two different edge conditions. This will clearly facilitate the development of
suitable design rules.

In the case of simply supported edges, the value of Yd = Y2) when (X = 0·6 and
PI = P2 = 0·1 is 16·36; see point B in Fig. 4. The K, (X curves for stiffeners having these
properties are given in Fig. 7, which shows quite clearly that the value of K = 313 is
achieved.
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One point which should be fully appreciated is that if the values of 11 and 11 for the
case of /31 = /32 = 0, and 11 and 12 for other values of /3, are used directly, then the value
of K obtained will be less than the maximum value KL' Referring to Fig. 4, for values
of /31 = /32 = 0'1, equation (21) yields the hyperbola ABeD, whilst direct application of
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Yt and Yz from equation (20) would yield the values of Yt and Yz corresponding to point
'G'. It is therefore essential that the relationship given in equation (21) be used.

Figures 8, 9, 10 and 11 give values of Yt and Yz for three values of the area ratio /3,
for the two edge conditions considered. Using these curves and Table 2, in conjunction
with equations (l9H21), it is possible to determine the size of the longitudinal stiffeners
in order that the plate shall provide the maximum buckling resistance.
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CONCLUSIONS
The optimum positions for two longitudinal stiffeners on webs subjected to pure

bending have been determined for the cases where both the longitudinal edges are
either rigidly clamped or simply supported. For both of these conditions relationships
between the flexural rigidity and area of the stiffeners and the aspect ratio of the panels
have been determined.
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Zusammeof8ssung--Die optimale Lage von zwei Langsversteifungen fUr Platten die auf reine Biegung bean­
sprucht werden ist bestimmt worden fUr den Fall, dass die beiden Langsseiten entweder starr eingespannt sind
oder frei aufliegen. Fur beide Faile der Lagerung werden die Beziehungen zwischen der Biegesteifigkeit und
Flache der Versteifungen und dem Seitenverhiiltnis der Platten aufgestellt.

A6cTpaKT-B pa60Te paccMaTpHBlleTcli YCToAlfHBOCTb CTeHKH, yKpeWleHHolt KaKHM yroAHo lfHCJIOM

HecHMMeTpHlfHo paCnOJIOlKeHHbIx npOAOJIbHblX yrOJIKOB lKecTKOCTH, nOABeprHyToA lfHCTOMy crH6aHHIO •

.LJ:alOTcR peweHHlI AJIli CJIylfaeB B KOTOPbIX o6a npOAOJIbHblX Kpall npHHHMalOTCR KaK JIH60 cBo6oAHO

onHpalOIl.\HecR, JIH60 lKecTKO 3alKaTble. B 060HX CJIYlfan npHHHMaeTCll, lfTO Kpall naHeJIH orpaHHlfeHHbIe

nonepelfHbIMH yrOJIKaMH lKecTKOCTH RBJIlilOTCli CBo6oAHO OnHpalOIl.\HMHCli.

qHCJIeHHbIe peweHHR npHBeAeHbI TOJIbKO AJIli CJIylfaR C AByMlI npOAOJIbHbIMH yrOJIKaMH lKecTKOCTH.

TIoKa3aHO, lfTO KorAa npOAOJIbHbIe Kpall 3alKaTbI, caMbIe 34jHjleKTHBHbIe n03HIIHH AJIli yrOJIKOB lKecTKOCTH

RBJIRIOTCli Ha O·136d H O·284d OT ClKaToro nORca, KorAa nOJIYlfaeTCli 3HalfeHHe KoJ$4lHUHeHTa npOAOJIbHOrO

H3rH6a K paBHoe 356. KorAa npOAOJIbHbIe Kpall CB060AHO OnHpalOTClI, COOTBeTCTBeHHbIe BeJIHlfHHbI

paBHbI O'I23d, O·275d H 313 . .LJ:JIli 3THX AByX OnTHMaJIbHbIX YCJIOBHlt 6bIJIH onpeAeJIeHbI COOTHoweHHlI

MelKAY napaMeTpaMH y H f3 yroJIKa lKeCTKOCTH H OTHOCHTeJIbHOrO yrJIa IX. TIPH 3HalfeHHlIX IX HHlKe eARHHUbI

6blJIO HaltAeHo, lfTO KorAa o6a yrOJIKa lKecTKOCTH OARHaXOBbI, YBeJIHlfeHHe nOMeplKKH npOAOJIbHOrO Kpall

OT npOCToro wapHHpHoro coeARHeHHlI K 3alKHMHOMY coeARHeHHIO BJIHlIeT OlfeHb MaJIO Ha lKecTKOCTb

yrOJIKa lKeCTKOCTH, HylKHoro AJIli Toro lfTO 6bI nOJIYlfHTb MaKCHMaJIbHoe B03MOlKHoe conpOTHBJIeHHe K

npOAOJIbHOMy H3rH6y. C APyrolt CTOpoHbI, AJIR BeJIHlfHH IX npeBbIWalOIl.\HX eAHHHUY, BJIHlIHHe nOMeplKKH

npOAOJIbHOrO Kpall CTaHOBHTCR nporpeccHBHO 60JIee BlllKHbIM,


